
Cite as: Pearson, Glenn and Michael Gill, “An Evaluation of Motion JPEG 2000 for Video Archiving”, Proc. Archiving 2005 (April 26-
29, Washington, D.C.), IS & T (www.imaging.org), pp. 237-243. Keywords: Motion JPEG 2000, Video Archiving

Archiving 2005 Final Program and Proceedings 237

An Evaluation of Motion JPEG 2000 for Video
Archiving

Glenn Pearson and Michael Gill
Lister Hill National Center for Biomedical Communications

National Library of Medicine, NIH/HHS, Bethesda, MD

Abstract

Motion JPEG 2000 (MJ2) is one potential format for long-
term video preservation. The format is attractive as an open
standard with a truly lossless compression mode.

Currently, three software-only MJ2 implementations
are readily available, from the Open JPEG 2000 project,
from the Kakadu project, and (incorporating Kakadu) from
vendor Morgan Multimedia. These are given a snapshot
evaluation here. Among the findings: on a modern desktop
machine, the Kakadu-based implementations can decode
and deliver quarter-screen or smaller lossless-MJ2-encoded
videos without frame drops. The newer Open JPEG 2000,
while improving, is not yet competitive. All the
implementations have practical limitations on acceptable
input formats, and inadequate or missing audio support.

At higher image resolutions, playback without frame
drops or reversion to lossy mode currently suggests
hardware-based implementations. A practical impediment
is limited availability of off-the-shelf board-level products.

Competing candidate file formats for video-editing,
archiving, and delivery currently offer better-defined
storage of metadata. Some formats, such as MPEG4/AVC,
achieve better compression at the expense of some
lossiness.

Introduction

Archiving Losslessly
Video archivists are keenly interested in techniques for

long-term digital preservation on disk. In particular,
consider the common case where the source material is not
in digital form, but instead on film (to be scanned) or high-
quality analog videotape (e.g., BetaCam SP). There is then
a choice of destination digital format. A standardized
format that reduces the storage costs of uncompressed
video, but remains lossless, is attractive for preservation.

Motion JPEG 2000 for Video Archiving
Motion JPEG 2000 (MJ2), a video stream and file

format, was standardized in 2002 as part of ISO/IEC’s
JPEG 2000 (JP2) standard1,2,3,4, with subsequent
refinements. This standard has been promoted by digital
still camera manufacturers for its unified treatment of still
and video compression. For stills, it is clearly of superior

quality to its predecessor, JPEG, at any given compression5.
MJ2 applies JP2 compression to each frame independently.

MJ2 is potentially attractive to video archivists not only
because it is an open, international standard, but because it
has a reversible, mathematically-lossless mode, not just the
“virtually lossless” mode of certain other codecs.

These are early days for MJ2 implementations. Effort
has concentrated on the MJ2 “Simple Profile”, which has:
• a single video track, up to 30 frames/second (fps);
• an optional uncompressed mono/stereo audio track,

interleaved with video;
• an optional still image;
• no references to media outside the file (i.e., self-

contained);
• media data in temporal order.

Choosing MJ2 Encoder Settings for Archiving
When encoding, a number of parameters must be

specified. The size, frame rate, and color encoding simply
reflect the source material or encoder limitations. Other
parameters are more open:

Number of Levels. The number of transform levels is
one less than the number of resolutions in the hierarchy of
wavelet decomposition. Table 1 shows suggested levels for
various decoder “compliance points”. Table 2 presents a
proposed refinement by the Digital Cinema Initiative (DCI)
to the JP2 codestream, which could be considered an
extension and specialization of lossy MJ2. As we shall see,
more levels give asymptotically better compression (and
presumably scalability), but take longer to process.

Table 1. Aspects of Suggested Compliance Points
(“Cpoints”) for MJ2 Decoders 6. A Cpoint-3 decoder is
the most capable and ideally best performing. “Levels” is
the minimum number of transform levels a compliant
decoder will guarantee to process, so one might consider
this a maximum when encoding. “Depth” is per color-space
component, of which 3 is typical. Not shown: the limit for
“Layers” at all compliance points is 15.

 Quarter
Screen

Std.
Video

HD
Video

Digital
Cinema

“Cpoint-…” 0 1 2 3
Height up to 288 pix. 576 1080 3112
Width up to 360 pix. 720 1920 4096
Depth up to 8 bits 12 12 16
Levels 3 4 5 5

238 Society for Imaging Science and Technology

Table 2. DCI Digital Cinema Distribution Master
(DCDM) Requirements 7. This differentiates digital
cinema into “2K” and “4K” profiles and their projector
decoders. There’s a single tile and single layer. The 4K
code stream is specially structured, so that a 2K decoder
easily gets a 2K image. A gamma-corrected CIE XYZ color
space is used.

 DCDM 2K DCDM 4K
Frame rate 24 fps (or 48) 24 fps
Height up to 1080 pixels 2160
Width up to 2048 pixels 4096
Depth, Color 12 bits, X’Y’Z’ 12, X’Y’Z’
Max. Levels 5 6

Number and Type of Layers. A “layer” is a quality

level, typically expressed at encode time by a quality value
or a compression rate. The highest level specified for a file
(lossless in our case) impacts the filesize: it determines the
bits per pixel stored and thus the maximum quality
decodable. Providing a lossless layer implies use of the
reversible integer 5/3 transform1.

Additional layers of lesser quality, necessarily lossy,
can be requested at encode time. Each such layer can be
thought of as gathering up resources from several
appropriate adjacent levels to express the bits per pixel
needed for the stated quality. In practice, these layers act as
hints to a decoder during real-time playback of where to
stop as decoding time runs out for each frame, as an
alternative to frame drops. For our evaluation here, we start
from the posture that, for archiving, frame drops can be
tolerated and the single lossless layer is enough, but revisit
the issue later.

Number of Tiles. Images can be subdivided into tiles to
ease transient memory loading. Tiling accommodates
extremely large images, or handheld devices with minimal
memory. A single tile seems fine for our application here.

Evaluation of Available Software-Only Motion
JPEG 2000 Implementations

To date, we have looked at the three most-available
software-only MJ2 implementations, and associated tools:

Kakadu 8
David Taubman’s JP2 implementation provides free

executables (that we restrict ourselves to here) and
licensable source code; a non-commercial license costs a
few hundred dollars. MJ2 offerings are command-line
functions kdu_v_compress and kdu_v_expand. Conversion
is from or to a “vix” file: a Kakadu-specific text header with
raw file appended; additional parameters are passed on the
command line. YCbCr (colloquially known as YUV) and
RGB planar raw formats are supported, with or without
chroma subsampling. The still image viewer kdu_show
does not support video, but a desire in that direction has
been expressed.

Morgan Multimedia’s Codec (MM) 9
This French company sells an inexpensive, proprietary

codec for MJ2 encode/decode on the Windows platform.
Built around Kakadu, but sped up and enhanced, it takes the
usual form of DirectShow and Video for Windows “filters”.
As a DirectX-compliant codec, it permits playback with,
e.g., Windows Media Player, of native or AVI-wrapped
MJ2 files. A property-page GUI, invocable from the
taskbar or from within compliant video editors, allows user
adjustments of parameters. The typical result of an editor
invoking MM compression is an AVI-wrapped MJ2 file - a
file with .avi extension and internal “fourcc” code (i.e.,
subtype) of “MJ2C”; in which a MJ2 bytestream follows an
AVI header. The encoder accepts 4:4:4 formats RGB32,
RGB24, RGB555, RGB565, and chroma subsampled
YUY2, UYVY, YV12, and IYUV (aka I420)10. The last
two are planar.

Open JPEG 2000 (OJ2) 11
From the Communications and Remote Sensing Lab,

Université Catholique de Louvain, Belgium, OJ2 provides
open-source C-language implementations of JP2 and MJ2
for Linux and Windows. The MJ2 offering consists of two
command-line conversion programs, “frames_to_mj2” and
“mj2_to_frames”, that convert respectively from and to raw
YUV files, the only supported video format. (Additional
utilities work with sequences of JP2 image files.) As with
Kakadu, the compressor boasts a large set of command line
options, most related to per-frame JP2 settings. We worked
with the distributed binaries, plus a build with VC7/XP.

The Analysis
A brief quantitative analysis is made of each

implementation’s encode and decode performance, as well
as degree of compression, and the effect of the number of
levels on each of these. In addition, a qualitative look is
taken at implementation shortfalls (e.g., audio, metadata),
and interoperability.

Each analysis starts with a short headerless YUV video
file. For convenience we began with a CIF12-sized file
(288h x 352w), “Foreman” 13, a deinterlaced, 300 frame
long, 30 fps, 4:2:0 subsampled clip often used in video
evaluations. We also report early results with a 480h x
720w but otherwise technically similar clip, “Claps”, a
sequence of head and shoulder shots of individuals
clapping. This was recorded at NLM on a 3 CCD miniDV
camera, edited in Adobe Premier Pro 1.5, output as
uncompressed AVI, then passed though the “avitoyuv”
conversion utility. YUV file viewing (and repackaging of
Foreman as an AVI file for MM testing) was done with the
“Emily” 14 viewer.

Findings

All performance times were measured (n=1) on a single-
CPU 3.19 GHz Pentium 4 Dell OptiPlex GX 270, with
512MB RAM and 1 GB pagesize, running Windows 2000
Pro. Default software parameters were used except as
mentioned.

Performance
 “Overall” times for OJ2 0.96 and Kakadu 4.3.2 derive

from externally-measured process times, divided by total
frames. Other times are based on reports by internal timers.

As its crisp performance indicates (Chart 1), Kakadu
has been speed-optimized. Reported transform tuning for
specific processors and instruction sets include
Pentium/MMX, PowerPC/Altivec, and UltraSparc/VIS.
The quarter-screen decode times are well below 33.3
ms/frame needed for 30 fps video without loss.

Chart 1. Kakadu Speed for Foreman Clip. “Processing” times
for encode exclude input file reads, and for decode exclude output
file writes. The latter were measured separately (not shown) and

essentially account for the difference from Overall shown.

OJ2’s code is recently produced, and clearly has not yet
been tuned much for performance (Chart 2), although it is
roughly 75% faster than the previous 0.95 release.

Chart 2. OJ2 Speed for Foreman. “Processing” times exclude
file I/O. Shown here are tests with v 0.96 Windows binaries as

distributed. (Source code was also compiled under VC7 and run.)

Next, we applied Kakadu to Claps, with 3.41 times the
pixels of Foreman. A decode performance of around 73-79
ms/frame is what would be expected from proportionality.
It’s slightly better than that (Chart 3), perhaps because
Claps compresses better. The performance is independent
of level, except for a hint of a very shallow “U”

relationship. The larger file size causes file I/O to consume
a larger fraction of overall time, particularly for encoding.

Chart 3. Kakadu Speed for Claps Clip. .

The performance of MM was assessed informally.
Unlike Kakadu and OJ2, MM has a real-time requirement,
including encoding within a video capture chain. To test
encoding generally, Foreman was exported from Emily as
an uncompressed RGB AVI file. A chain of A/V filters was
built in GraphEdit15 to read the file, split off any audio,
convert the color space, then apply MM’s encoding and file
output. With 3 MJ2 levels, this process at full-speed
(clockless) took about 9 ¼ s., as seen in a record of CPU
and disk utilization captured with Windows PerfMon.
(Future MM/GraphEdit tests might instead rely on an
achieved-frame-rate field in the filters’ property sheet.)
This is roughly 31 ms per frame, consistent with Kakadu’s
performance of 29 ms in Chart 1. (The vendor claims that
highly-compressed lossy operations, particularly encoding,
are now tuned to be much faster than Kakadu or prior
MM.). As for real-time decoding, if necessary MM (given
no quick-lossy-layer alternative) drops frames. MM can’t
report drops, but subjectively, Foreman didn’t show them.
With Claps-size videos, Kakadu’s 58 ms/frame in Chart 3,
versus 33 ms/frame at 30 fps playback, implies dropping at
least every other frame.

Degree of Compression
For a CIF-sized file (Chart 4), there are no compression

benefits beyond 3 levels, and 2 is also acceptable for
slightly faster decode time. Similarly, for a full-screen
video, there are no benefits beyond 4 levels, and 3 are also
good. Generalizing, one can recommend the number of
levels given in Tables 1 and 2, or one less.

Kakadu creates smaller MJ2 files than OJ2.
Speculatively, differences in default settings, amount of
metadata stored, or spaced reserved before need is
determined, might be contributing factors.

Number of layers has minimal effect on filesize. A
separate OJ2 Foreman test where a half-dozen layers
(including lossless) were encoded increased filesize 0.09%
(with 3-level) and 0.15% (with 6-level) above 1-layer size.

0

5

10

15

20

25

30

35

1 2 3 4 5 6
Number of Levels

Av
g.

 T
im

e,
 m

ill
is

ec
. p

er
 fr

am
e

Encode - overall
Encode - processing
Decode - overall
Decode - processing

0

100

200

300

400

500

600

700

800

900

1 2 3 4 5 6

Number of Levels

A
vg

. T
im

e,
 m

ill
is

ec
on

ds
 p

er
 fr

am
e

Encode - overall
Decode -overall
Encode - processing
Decode - processing

0

20

40

60

80

100

120

1 2 3 4 5 6
Number of Levels

Av
g.

 T
im

e,
 m

ill
is

ec
. p

er
 fr

am
e

Encode - overall
Encode - processing
Decode - overall
Decode - processing

240 Society for Imaging Science and Technology

Beyond these specific results, broad, uniform swatches
of color compress much better than busy detail.
Furthermore, as discussed later, spurious “detail” can be
introduced by noise, film grain, or rapid interlaced motion.

Chart 4. Kakadu and OJ2 Compression.

Other Limitations
The most troubling aspect was with audio. OJ2,

oriented towards video research, has no native-within-MJ2
audio support. There is no evidence that Kakadu has,
either, in spite of sufficient decode performance to make
real-time playback plausible. Kakadu presumably supposes
that some wrapper will be supplied if audio is desired. With
MM, that wrapper is AVI. An AVI file can enclose audio
(raw or compressed) and video streams independently,
either abutted or interleaved or both, but synchronization
can be an issue. MM is also said to support Simple Profile
raw audio in native MJ2 files. We hope to probe this
further, using Claps and digital samples captured from
NLM’s biomedical collection on BetaCam SP and older
forms of analog tape.

Another problem to be alert for is a filesize limit. If a
program loads its input file entirely into virtual memory at
the outset (as OJ2 did prior to v 0.96), this typically
prohibits a file greater than 2 GB, under current desktop
Windows. Certain such filesize limits can sometimes be
circumvented with a third-party “frame server”, or by
dealing with sequences of image files (a new OJ2 option).

The archivist, when digitizing video, should be aware
of what raw input formats these three MJ2 implementations
accept. While Kakadu accepts RGB and YUV color spaces,
OJ2 is limited to YUV, and neither handles non-planar, per-
pixel “packed” formats. MM takes in certain planar and
packed formats, within an AVI container. All three
products read and write encoded MJ2 files, but only MM
does AVI.

Finally, a word about support. These offerings are
academic or small-business products, backed by a small
number of individuals. Kakadu and OJ2 both provide well-
organized, substantial free documentation. Kakadu offers
additional reference material with a paid license, and has the
most active developers’ forum. MM has a complex product
line of similarly-named codecs (MJ2, JP2, Motion JPEG,
LSI-MJPEG), with little specific information about MJ2.

Interoperability
Ideally, a file encoded to MJ2 with one of these

products is decodable in another. Furthermore, a Windows
codec like MM should allow playback in a media player,
and encoding within a video editor (often an important
component of digitalization workflow). We mention here
some problems detected.

When we first attempted direct OJ2 file playback using
Morgan codec version 1.40, a significant “fog” effect was
seen (Figure 1). Version 2.00 of November, 2004, with
further performance tuning, no longer exhibits this flaw.
However, the first frame of the video is sometimes inverted,
possibly due to a Microsoft player refresh bug.

Figure 1. Interoperability Problems Being Overcome. Foreman as
he should appear (left) and did appear (right) until recent fix.

As for encoding AVI files with MM, while successful
using GraphEdit, it was not using Adobe Premier Pro 1.5:
MM surprisingly did not appear among other DirectShow
codecs for movie exports. The vendor posits a color
subsampling mismatch, and is actively addressing the issue.

Further Discussion

Playback Performance and the Role of Layers
Computer technology continues to advance, as

traditionally expressed by Moore’s law. Within a decade,
this advance, even without further speedups to best-of-breed
MJ2 implementations, is likely to allow real-time full-screen
lossless MJ2 decoding without frame dropping on typical
desktop machines. In the meantime, where the chief goal of
encoding is not delivery, but rather long-term archiving,
performance is a secondary concern, and frame-dropping
during playback may be tolerable.

However, adding lossy quality layers can permit a
smoother, more attractive playback with current-generation
equipment. As indicated by results above, the filesize
penalty for this is trivial. We hope to look further into what
are the optimal number and spacing of such layers, given
some projected distribution of playback environments.
Note that low-quality levels, motivated by narrow
bandwidth channels, are likely not of interest (unless an
extractive server like Blitz described next is used.) This is
because it makes little sense to transmit a large lossless file
of which only a small fraction is used. Instead, one should
separately encode and transmit a highly compressed file
(not necessarily MJ2).

0.25

0.3

0.35

0.4

0.45

0.5

0.55

0.6

1 2 3 4 5 6
Number of Levels

Fr
ac

tio
n

(1
.0

 =
 u

nc
om

pr
es

se
d)

OJ2 - Foreman

Kakadu - Foreman

Kakadu - Claps

Alternative Hardware Approaches
At higher resolutions that digital TV, problems due to a
lengthy decoding time might be solved by a hardware-based
MJ2 system. For example, theater-based digital cinema16
can have specialized hardware. Another example is an
MJ2-server, such as the Sony “Blitz” system17 recently
shown at NLM, that streams media to remote clients,
accommodating their bandwidth and processing limitations.

Behind any hardware solution is a JP2 chip, a number
of which are available for volume incorporation into
cameras. Not all hardware systems claim the throughput
needed for real-time TV-resolution MJ2 video. Two that do
are DSPWorx’s chip pair, “Cheetah” and “Leopard”18, and
Amphion’s circuit designs for “functional cores” within a
system-on-chip, specifically a “CS6510” JP2 core paired
with an on-chip embedded processor19.

There is a paucity of off-the-shelf JP2/MJ2 PC boards.
Analog Devices has evaluation boards (ADV202-SD, -HD)
for its JP2 chip derived from Kakadu, but these are limited
to “quantity one”20. Consequently, ambitious creators of
high-level systems, like SAMMA21, have had to prototype
their own boards. The OJ2 project is moving towards
letting its MJ2 software “wrapper” work with JP2 chips.

Retaining Metadata
Archivists seek to preserve a video’s metadata. This

may be video stream data such as 608/708B closed
captioning22. Or it may be user-defined metadata. Video-
editing file formats (e.g., OMF, GXF, MXF, AAF)23
provide places within the file for user-defined metadata.
The MJ2 standard also allows emplacing metadata. It
provides great flexibility in such placement, but little
guidance as to what to include and where. Further
definitional work is needed at the standards level, for
metadata interoperability among MJ2 implementations as
well as metadata transfer to and from other file formats.
Meanwhile, storing metadata such as captions outside the
MJ2 file would seem prudent.

For JP2 digital still cameras, the situation is better: a
recent ANSI standard24 defines required and optional
metadata about the camera, capture time and settings, image
statistics, and GPS location. Text annotations (plausibly
added with editing software) and audio are also supported.

Compression Improvement
For interlaced video, the MJ2 standard defines a choice

of per-frame or per-field encoding. Per-field compresses
better during rapid movement; otherwise per-frame is
preferable. The per-field choice is beginning to appear in
products, e.g., Morgan v 2.00. This early support applies
that choice to the whole movie. Perhaps a smart encoder
will evolve to make the best choice for each frame – a
feature MPEG4/Advanced Video Codec (AVC)25 offers as
“Picture-adaptive frame/field coding” (PAFF). With ITU-R
601 video clips, PAFF compressed 15-20% better than
AVC’s per-frame-only mode26. (AVC has further fine-
tuning for interleaving beyond MJ2, with slightly different
compression algorithms for fields and frames. And a fourth
option, MBAFF, picks the best choice of frame or field

coding within fixed rectangles of each frame27, to be ~15%
better than PAFF26.)

As mentioned, MJ2 can be mathematically lossless,
avoiding any generational loss, unlike the “virtually
lossless” modes of codecs like AVC. (In fairness, AVC
does allow individual macroblocks to be passed unaltered
and uncompressed, though this is not greatly desirable.
Moreover, new AVC extensions include a “H444P” profile,
only for unsubsampled 4:4:4 video. It has a lossless mode
that skips the transform, but retains prediction and entropy
coding. The result is said to be “fairly efficient” overall,
combining “not the best” intraframe compression with the
advantages of interframe prediction28.)

Lossless MJ2 gives less compression than AVC’s
virtually-lossless quality level29. Much of this difference
(beyond the lossiness itself) is likely due to AVC’s
interframe comparisons. To date, there has been an effort
towards “product differentiation” between the work of the
two ISO/IEC JTC 1/SC29 subcommittees, WG1’s JP2/MJ2
and WG11’s MPEG4, by restraining MJ2 to intraframe-
only encoding. Perhaps this restraint should be lifted.
While interframing is certainly harder to implement in
cameras, editors, and players, it yields the long-term
benefits of more efficient compression.

It is instructive to consider lossy AVC with and without
interframing. One study30 found that interframing generally
achieved higher compression at a given quality level, except
when the source was a high-resolution film scan (e.g., 4K
horizontal, 35mm film); the film grain suppressed any
interframing benefit. The benefit would emerge if the
images were preprocessed to a much lower resolution by
pixel-averaging. It seems likely that these findings would
apply to lossless MJ2 with interframing. (The same study,
comparing lossy MJ2 and I-frame-only AVC, found them
similar when lightly compressed, with AVC-I sometimes
having a slight edge.) Other experiments31 with JP2-like
wavelet codecs with interframing saw similar results.

More quantitatively, Imaizumi et al32 built an
experimental JP2-based software framework for lossless
interframe comparisons, using JP2 to compress the
difference frames (between actual and predicted image), and
supplemented with motion-estimation vectors. Best settings
delivered a 10-12.5% filesize reduction on 720 x 576 clips.

Conclusion

Lossless MJ2 has promise as an archival format, but more
time is needed for implementations, such as those evaluated
here, to be fully practical and convenient. Kakadu and MM
have achieved real-time performance. Will archiving of
analog video develop as a third application area for MJ2,
beyond still camera video capture and digital cinema
distribution? It may well, although there is a counter-
current of activity from modern MPEG formats, which,
while lossy, are high-quality. A lossless format in effect
pays a cost in disk space, to avoid the labor costs of a
Hollywood-style compressionist (with high-end software) to
optimize a lossy format. This can be a reasonable trade off
for a library.

242 Society for Imaging Science and Technology

Acknowledgements

Within NLM, Karen Steely, Leif Neve, Nancy Dosch, Jim
Main, and Mike Detweiler helped with video material and
processing. We appreciate correspondents at vendor sites,
particularly OJ2’s François-Olivier Devaux and MM’s
Guillaume de Bailliencourt. Thanks as well to Branch
Chief George Thoma and others for their comments and
support.

References

1. ISO/IEC Intl. Std. 15444, Information technology – JPEG
2000 image coding system, particularly Part 3: Motion JPEG
2000 (Sept. 2002, with subsequent amendments).

2. Michael D. Adams, The JPEG-2000 Still Image Compression
Standard, N2412, ISO/IEC JTC 1/SC 29/WG 1. (Dec. 2002).

3. Jin Li, Image Compression: The Mathematics of JPEG 2000,
Modern Signal Processing 46, pp. 185-221. (2003).

4. David Taubman, Michael Marcellin, JPEG2000: Std. for
Interac. Imaging, Proc IEEE 90 (8), pp. 1336-57. (Aug 2002).

5. Diego Santa-Cruz, Touradj Ebrahimi, A Study of JPEG 2000
Still Image Coding versus Other Standards, Proc. X Euro.
Signal Proc. Conf., Tampere, Finland, pp. 673+. (Sept. 5-8,
2000). http://jj2000.epfl.ch/jj_publications/papers/004.pdf

6. Part 3 draft Amendment 3, Definition of compliance classes
and testing for Motion JPEG 2000. (Nov 2002).
www.jpeg.org/public/15444-3fpdam3.doc .

7. ISO/IEC JTC1 SC29, Proposed draft amend. 1 to 15444-1:
Profiles for Digital Cinema Applications, WG1 N3471. (Nov.
2004).www.itscj.ipsj.or .jp/sc29/open/29view/29n6379t.doc .

8. David Taubman/Univ. of New South Wale’s Kakadu
commericial C++ implementation of JP2000 Part 1;
www.kakadusoftware.com. Copyright Unisearch Ltd.

9. Morgan Multimedia, Montpellier, France. www.morgan-
multimedia.com. Some specs, personal communication.

10. See www.fourcc.org for AVI fourcc format descriptions.
11. The Open JPEG Project, U. Catholique de Louvain, Belgium,

www.tele.ucl.ac.be/ PROJECTS/OPENJPEG.
12. “Common Intermediate Format”, a ¼-screen NTSC- and

PAL-friendly format from ITU H.261 videoconferencing std.
13. Short quarter-screen YUV video files were from http://

meru.cecs.missouri.edu/free_download/videos/
14. Nick Young, Emily 2004 YUV Viewer, http://

dmsun4.bath.ac.uk/resource/emily/emily.htm.
15. GraphEdit is distributed with Microsoft’s DirectX SDK. Also

useful: the GSpot AVI diagnostic (gspot@headbands.com).
16. Eric Edwards, Siegfried Foessel, JPEG 2000 for Dig. Cinema

Appls. (Apr, 2001). www.jpeg.org/public/ DCINEMA-v2.pdf
17. Eisaburo Itakura, Hiryasu Furuse, Akifumi Mishima, Eric

Edwards, A Single Source SNR/Resolution Scalable Video
Delivery Sys., IS&T 2004 Archiving Conf., pg. 259. (2004).

18. DSPWorx, Cheetah chip, www.dspworx.com/cheetah.htm;
www.dspworx.com/downloads/dsw2000s_pb. pdf.

19. Amphion, press release about JP2000 and other cores:
www.amphion.com/news/news-100902.htm. See also:
www.edtneurope.com/story/tech/ OEG20020717S0005-R.

20. Analog Devices, Inc., chip: www.analog.com/en/prod/0,
2877,ADV202,00.html. See also ADV202 evaluation boards.

21. System for Automated Migration of Media Archives
(SAMMA), Media Matters, Inc., www.media-matters.net.

22. Caption stds. include EIA-608 (NTSC) & -708B (DTVCC).
See Delivering Captions in DTV. (Oct. 2002). www.
broadcastpapers.com/data/NCAMDTVCaptions-print.htm

23. OMF (Avid) and GXF (Grass Valley Group) are vendor-
invented interchange formats. Vendor-neutral standards are
MXF (MPEG-Pro, SMPTE) and AAF (AAF Assoc.).

24. ANSI/13A IT10.2000-2004, Digital Still Cameras – JPEG
2000 DSC Profile.

25. Gary J. Sullivan, Pankaj Topiwala, Ajay Luthra, The
H.264/AVC Adv. Vid. Coding Std.: Overview & Intro. to the
Fidelity Range Extensions, SPIE Conf. on Appl. of Dig. Im
Proc XXVII.(Aug 2004). [FRExt includes High 4:4:4 Profile]

26. Gary Sullivan, Thomas Wiegand, Video Compr. - from
Concepts to H.264/AVC Std, Proc IEEE, pp.1-13.(Dec 2004).

27. MPEG4 is a multipart ISO standard, promoted by MPEG
Indus. Forum (www.m4if.org/resources.php). Of note: Pt. 10,
AVC, aka ITU H.264. See also Pt. 15, AVC File Format.

28. D. Marpe, V. George, H.L. Cycon, K.U. Barthel, Perf. Eval.
of Motion-JPEG2000 in comparison with H.264/AVC….,
SPIE's Intl. Symp. on Photonics Tech. for Robotics,
Automation, and Manuf.; Wavelet Appl. in Industrial
Processing. (Oct. 2003).

29. Til Halback, Mathias Wien, Concepts & Perf. of Next-Gen.
Video Compr. Standardization. Proc. Nordic Signal Proc.
Symp. (NORSIG), aboard Hurtigruten. Norway. (Oct. 2002).

30. Michael Smith, John Villasenor (ICSL/UCLA), Intra-frame
JPEG2000 vs. Inter-frame Compression Comparison, SMPTE
Tech. Conf., Pasedena, CA (Oct 2004). www.smpte.org/
conferences/146sescomp.cfm; www.conferencemediagroup.
com/detail.asp?product_id=SM-04-02-02 for audio.

31. Jens-Rainer Ohm, Mihaela van der Schnaar, John W. Woods,
Interframe Wavelet Coding – Motion Picture Representation
for Universal Scalability, EURASIP Signal Proc.: Image
Comm., Special issue on Digital Cinema. (2004). (www.ece.
ucdavis.edu/~mihaela/IC_DCspecial_InterframeWavelet.pdf

32. Shoko Imaizumi, Ayuko Takagi, Hitoshi Kiya, Lossless Inter-
frame Vid. Coding using Ext. JPEG2000, Proc 2002 Int. Tech
Conf Circ/Sys, Comp & Comm, Phuket,Thai. (Jul 2002).
www.kmutt.ac.th/itc2002/CD/pdf/19_07_45/ FA1_PJ/7.pdf.

Biographies

Glenn Pearson has a Ph.D. in Computer Science from the
University of Maryland, College Park. Since 1997, he has
been with MSD, Inc., Vienna, Virginia, developing imaging
workflow and presentation software for NLM, part of NIH
within the Department of Health and Human Services. His
most recent project involves video streaming and archiving.

Michael J. Gill is an electronics engineer with the
Communications Engineering Branch of LHNCBC, a
research and development division of NLM. His research
interests include image transmission, communications
systems, and performance measurement. He is a Senior
Member of the IEEE and received his BS EE from the
University of Maryland College Park.

